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Effect of symmetry breaking on level curvature distributions
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We derive an exact general formalism that expresses the eigenvector and the eigenvalue dynamics as a set of
coupled equations of motion in terms of the matrix elements dynamics. Combined with an appropriate model
Hamiltonian, these equations are used to investigate the effect of the presence of a discrete symmetry in the
level curvature distribution. An explanation of the unexpected behavior of the data regarding frequencies of
acoustic vibrations of quartz block is provided.
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[. INTRODUCTION ture was established, for fully chaotic systems that are time-
reversal invariant and thus governed by the Gaussian
The usefulness of the study of statistical properties of eiorthogonal ensembléGOE) [6]. The expression
genvalues and eigenvectors of quantum systems has already
been demonstrated in many areas of physics. A lot can be
learned, especially about symmetries, by just employing the
appropriate statistics. It has also become clear that these sta-
tistics follow universal patterns that can be modeled by probwas then proposed for the entire domain of the curvakure
ability distributions extracted from an ensemble of randomFinally, it has been proved that this function gives the exact
Hamiltonians of the same class of the underlying symmetndistribution of curvatures, in the case of random matrix en-
of the system under stud{]. This has been a field of intense sembles[7]. The power$ in the denominator is the GOE
investigation over the last 2 decadgd. These activities value of (8+2)/2 with 8=1,2, and 4 for the GOE, Gaussian
have concentrated their effort on what we can call the “statunitary ensemble, and Gaussian symplectic ensemble, re-
ics” of the problem, in which stationary Hamiltonians are spectively.
considered. More recently, however, interest has also been Recently, the difficult task of experimentally checking this
directed to the dynamical aspects of the same question. prediction was undertaken by Bertelsehal. at the Center
The “dynamics” consists in considering a given Hamil- for Chaos and Turbulence of the Niels Bohr Instit{i&s.
tonian as a function of a paramet@epresenting “time}).  They studied the dependence on the temperature, the external
The statistical properties that characterize the evolution arparameter in the system, of the spectrum of frequencies of
then studied as the parameter is varied. Only evolutions thajuartz blocks. In previous investigatiof8, they have found
preserve the symmetry class of the Hamiltonian are considthat the spectra of frequencies of quartz blocks obey statisti-
ered. Several measures have been introduced to investigatal models based on random matrix theories. The dynamics
this kind of evolution. One of the most frequently used onesf the frequencies, as a function of the temperature, was
is the probability distribution of the level curvature, which therefore measured for a quartz block whose static statistical
can be thought of as “acceleration” as it is defined in termsproperties were previously established. However, the data
of the second derivative with respect to the parameter. Thesabtained have shown a deviation from the above expected
distributions measure correlations among the set of eigenvaturvature distribution. This deviation, although slight, is sig-
ues. Another measure that is commonly used is the two-poimificant and not yet completely understood. We are going to
correlation function between first derivativ€velocities”).  show, in the present paper, that the data can in fact be fully
Given some generic level, this two-point correlation functionunderstood if one requires the average curvature to be equal
is obtained by calculating the “velocity” at two different to 1, as is implied by the universal distribution, Edj).
values of the paramet€B]. Measures have also been consid- So far, all studies of parametric correlations have been
ered to characterize the evolution of the eigenvediéfs concentrated on the fully chaotic regime when the system
These studies started with Wilkinson’s pioneering workstatistics are well described by the Gaussian ensembles of
that investigated the dependence of the eigenvalues of a fulllandom matrix theory, in particular, the GOE, if there is
chaotic billiard as a function of its shap®]. The plot of the time-reversal invariance. The partially chaotic situation has
trajectories of levels as a function of the parameter that conbeen little investigated. We intend here to provide a system-
trols the shape, exhibits a typical pattern of avoided crossatic discussion of this situation. In Sec. Il, we develop the
ings. A measure of these is provided by the curvature of théormalism and the model we employ, and in Sec. Ill, we
trajectory. There is now an analytical evidence that, in thepresent the numerical results and the discussion. We verify
fully chaotic regime, the curvatures, after an appropriate resthat, at the GOE limit, the above universal expression for the
caling, follow a universal simple distribution. The talil of this level curvature distribution is obtained. As some degree of
distribution has been investigated, and an asymptotic depesymmetry is introduced, it is found that the distribution be-
dence inversely proportional to the third power of the curva-comes narrower. However, as the symmetry is progressively
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introduced, the distribution returns to the universal function, P(t)y=UM(t)[— Hp(0)sint+ P(0)cost]U(t),
if the average of curvatures is imposed as 1.

whereU(t) is the solution of the equatiod =US given by
Il. THE FORMALISM AND THE MODEL

t
We shall now derive a set of equations that describe si- U(t)=Texpf S(r)dr
multaneously the dynamics of the energy levels and of the 0
eigenvector components of a Hamiltonigh These equa- with T being the time-ordering operator
tions contain the equations of motion of the matrix_elements To implement this solution numericaily a basis has to be
Of H, \ivhose dependence on_the paramgtezpresenting the chosen to express the eigencomponents. Since our objective
time,” Is supposed FO be given. Our starting point is the is to investigate the curvature, a quantity related to the be-
general matrix equation havior of the eigenvalues as the external parameter is varied,
H=UH.UT 7) it is convenient to use the instantaneous Hamiltonian eigen-
D ’ . . .
states as basis vectors. In this case, from the diagonal part of
whereH is anNx N real symmetric matrixHp, is the diag-  Ed- (4), we derive
onal matrix constructed with thid eigenvalues, and is the .
unitary matrix whose columns are ti\ eigenvectors. As- Ex=Pkk (8)

suming thatHy andU also depend on the parametedif- N .
ferentiating E(D4.(1) with respect tat we get and using in Eq.(5) the relationS, =Py /(Ex—E,) [ob-
tained from the off-diagonal part of Eq4)] we can then

H=UHyUT+UHpUT+UHLUT, 3) derive the equations
N
where the derivative is indicated by a dot. Multiplying Eq. o _ PPy pot S P.p
(3) by UT from the left, byU from the right, and defining the Kl Ec—E ¥ n-fme <M ME-Eq,
matrix S=UTU=—UTU we obtain the equation of motion L
. + 9
Hp=[Hp,S]+P, 4 Ei—En
where the matrixP=UTHU was introduced. On the other d
hand, we find forP the conjugate evolution equation N op2
- km
. .. Pw=—E+ . 10
P=[P,S]+U'HU. (5) e R ek Ex—En (10

By choosing a particular model, i.e., the dependence of This set of coupled equations is one of the main results of
the matrix element on the parametgthese equations can be this paper. All calculations will be based on it. Thus the
employed in several contexts. They can be used, for ex‘accelerations,” i.e., the levels’ curvature, are just given by
ample, to construct an alternative method of matrix diagonalEg. (10).
ization, or, by requiring the matrix elements to satisfy appro- Regarding the random matrix ensemble, we shall work
priate Langevin equations, they lead to Dyson’s Brownianwith a Gaussian ensemble that interpolates between one
motion model[10]. Here, we concentrate on the simple GOE and two decoupled GOE's. This ensemble has been
model given by already employed with a very satisfactory result in the analy-

sis of data relative to symmetry breakifitl, 12 in nuclear
H=Hjcost+H,sint, (6)  [13] and acoustic systeni8]. It can be defined by the fol-
lowing operator equatiofil4]:
whereH,; andH, are a couple of fixed, i.e., parameter inde-
pendent, random matrices taken from the same matrix en- H=PHCCEP+QHCCEQ+ \(PHCOEQ+ QHCOFpP),

semble, and is the parameter. If in Eq6) H; andH, are (11
taken from a Gaussian ensemble, the evolution will preserve
the probability distribution, so thad will remain in the same where P==M P;, Q=1—P, and P;=|i)(i|, i=1,... N
ensemble. With this choice, E(p) becomes are projection operators,ON<1 is the parameter that con-
trols the transition, anél ®°F denotes a GOE matrix whose
pz[p,s]— Hp. (7) elements follow a joint probability distribution given by
The pair of coupled equations, Edd) and(7), have the P(H®OF)ocexd — a tr(H®F)?], (12

explicit solution ) ) ) ) .
with a being an arbitrary scaling parameter. With the above

Hp(t)=UT(t)[Hp(0)cost+ P(0)sint]U(t) definitions,A =1 corresponds to the GOE case, while 0
corresponds to block diagonal random matrices, made up of
and two GOE matrices of sizesl XM and N—M)(N—M).
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FIG. 1. Densitiy of levels: comparison of the calculated density
(histogram with the semicircle law(15) (solid line). The calcula-
tion corresponds to matrices of dimensibi=100, ande =0.32.
Both density p) and energyE) are in arbitrary units.

FIG. 2. Level curvature distributions: comparison of the calcu-
lated histograms with the theoretical predictidn (solid line). The
calculations correspond to matrices of dimension 100, and for
the values o indicated in the figure. The variabl&k) andk are

Regarding this ensemble, it is important to stress xhist dimensionless.

not a more convenient parameter to work with, since the h he nice fit obtained with thi .
transition is also dependent on the matrix sktelndepen- " F19. 1, we show the nice fit obtained with this expression

dence on the dimension is obtained by introducing the scale@hen compared with the numerical valuesp¢E) generated
parameter within the two coupled GOE'’s ensemble alluded to above.

Second, we need some normalization of the accelerations.
e=+/N\. (13)  This is a controversial issue that requires some discussion.
On one hand, it has been proposed that the paraneter
should be replaced by a new dimensionless parameter
lated tot by [16]

Before presenting the results, we discuss the rescaling

. NUMERICAL RESULTS AND DISCUSSION

variables necessary to extract a universal behavior. First, we dr =

have to unfold the spectrum, that is, we work with a new at V(X), (16)

spectrum generated by the transformation
E where the average of the velocity is made over the whole set

X|=J dEp(E) for I=1,... N, (14)  of eigenvalues or, equivalently, over the ensemble. The level
o curvature is then defined in terms of these new scaled vari-
- . ) i ables as

where p(E) is the averaged level density. Without loss of

generality, we consider in the calculation only the symmetric )

situation, N=2M, in which the matrices are decomposed Kzid_x: 1 (x <XX> ) 1n

into blocks of equal size. In this case, the average density is Tdr? (X% (x2>

given by the Wigner’s semicircle lajl5]. With an appro-
priate scaling that guarantees the correct value of the secon

2
moment of the eigenvalue, the level density is given by %erex p(E)E andx= p(E)E+dp(E)/d E(E)2,

On the other hand, the universal curvature distribution,
4 N Eqg. (1), implies that(|k|)=1. It is not at all clear that the
HE) = — % —(1+A\2)—E2, (15)  scaled curvatures given by E(L7) will satisfy this condi-
m(1+2\%) Y2« tion. Thus, we imposed the normalization
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' ' ' ' ' ' a reduction on the probability of large curvatures with the
0.5 - - distribution becoming narrower. We shall see that this indeed
o happens.

Our main results are presented in Fig. 2, where the cur-
vature distributions were calculated for four values of the
scaled parametdd3). The figures show that, at the two ex-

i treme situations, namely, in the one GOE limit and in the two
fully decoupled GOE's limit, the curvatures distribute them-
selves according to the universal distribution. We would ex-
7 pect this kind of behavior in the latter limit, since the levels
in each block become completely independent of the levels
in the other. Thus, their trajectories can cross freely. As the
above discussion predicted, the distributions are narrower in
the intermediate region. We stress that these results are
strongly dependent on the renormalizatidsm).
6 Turning now to the question of the behavidistributions
wider than the universplpresented by the data of R¢8],

FIG. 3. Fitting of the datdcrossesof Ref. [8] with the param-  ONe possible explanation would be that the curvatures do not
etrized distribution(20) (solid line). The best fit §2=0.00004) average to 1. To check this point we have fitted the data with
was obtained withy=1.27+0.01. The dotted curve corresponds to the distribution
the universal distribution. The variables are dimensionless.

K P(K)=
k=KD (18) " ot ki

with K given by Eq.(17). Our calculations have shown that in which the average curvaturg=(|K|) is treated as a free
this last step is necessary in order to get stable results, i.?arameter. The best fit, obtained wigh=1.27+0.01, is dis-
independent of the subset of levels of the spectra over whicRlayed in Fig. 3. This excellent fit makes this explanation
the statistics is performed. plausible.

The behavior of the distribution, E€1), for large curva- In conclusion, we have investigated the effect of the sym-
tures can be traced to the level spacing distribution. In factmetry breaking on the level curvature distribution using a
large curvatures can be considered, approximately, as ifandom matrix ensemble that allows for a transition from one
versely proportional to the small level spaciagrhus if we ~ GOE to two decoupled GOE's. We have also provided an

assumesec 1/k and use the fact that, in the GOE caB¢s) is  €xplanation for the discrepan¢§] of the data regarding the
linear in's, we obtain temperature dependence of frequencies of acoustic vibrations

of quartz blocks.

(20

P(k)~P(s)

ds, .
= k™=, (19
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