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Effect of symmetry breaking on level curvature distributions
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We derive an exact general formalism that expresses the eigenvector and the eigenvalue dynamics as a set of
coupled equations of motion in terms of the matrix elements dynamics. Combined with an appropriate model
Hamiltonian, these equations are used to investigate the effect of the presence of a discrete symmetry in the
level curvature distribution. An explanation of the unexpected behavior of the data regarding frequencies of
acoustic vibrations of quartz block is provided.
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I. INTRODUCTION

The usefulness of the study of statistical properties of
genvalues and eigenvectors of quantum systems has alr
been demonstrated in many areas of physics. A lot can
learned, especially about symmetries, by just employing
appropriate statistics. It has also become clear that these
tistics follow universal patterns that can be modeled by pr
ability distributions extracted from an ensemble of rand
Hamiltonians of the same class of the underlying symme
of the system under study@1#. This has been a field of intens
investigation over the last 2 decades@2#. These activities
have concentrated their effort on what we can call the ‘‘s
ics’’ of the problem, in which stationary Hamiltonians a
considered. More recently, however, interest has also b
directed to the dynamical aspects of the same question.

The ‘‘dynamics’’ consists in considering a given Ham
tonian as a function of a parameter~representing ‘‘time’’!.
The statistical properties that characterize the evolution
then studied as the parameter is varied. Only evolutions
preserve the symmetry class of the Hamiltonian are con
ered. Several measures have been introduced to invest
this kind of evolution. One of the most frequently used on
is the probability distribution of the level curvature, whic
can be thought of as ‘‘acceleration’’ as it is defined in ter
of the second derivative with respect to the parameter. Th
distributions measure correlations among the set of eigen
ues. Another measure that is commonly used is the two-p
correlation function between first derivatives~‘‘velocities’’ !.
Given some generic level, this two-point correlation functi
is obtained by calculating the ‘‘velocity’’ at two differen
values of the parameter@3#. Measures have also been cons
ered to characterize the evolution of the eigenvectors@4#.

These studies started with Wilkinson’s pioneering wo
that investigated the dependence of the eigenvalues of a
chaotic billiard as a function of its shape@5#. The plot of the
trajectories of levels as a function of the parameter that c
trols the shape, exhibits a typical pattern of avoided cro
ings. A measure of these is provided by the curvature of
trajectory. There is now an analytical evidence that, in
fully chaotic regime, the curvatures, after an appropriate
caling, follow a universal simple distribution. The tail of th
distribution has been investigated, and an asymptotic de
dence inversely proportional to the third power of the cur
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ture was established, for fully chaotic systems that are tim
reversal invariant and thus governed by the Gauss
orthogonal ensemble~GOE! @6#. The expression

P~k!5
1

2~11k2!3/2
~1!

was then proposed for the entire domain of the curvaturk.
Finally, it has been proved that this function gives the ex
distribution of curvatures, in the case of random matrix e
sembles@7#. The power 3

2 in the denominator is the GOE
value of (b12)/2 with b51,2, and 4 for the GOE, Gaussia
unitary ensemble, and Gaussian symplectic ensemble,
spectively.

Recently, the difficult task of experimentally checking th
prediction was undertaken by Bertelsenet al. at the Center
for Chaos and Turbulence of the Niels Bohr Institute@8#.
They studied the dependence on the temperature, the ext
parameter in the system, of the spectrum of frequencie
quartz blocks. In previous investigations@9#, they have found
that the spectra of frequencies of quartz blocks obey stat
cal models based on random matrix theories. The dynam
of the frequencies, as a function of the temperature, w
therefore measured for a quartz block whose static statis
properties were previously established. However, the d
obtained have shown a deviation from the above expec
curvature distribution. This deviation, although slight, is s
nificant and not yet completely understood. We are going
show, in the present paper, that the data can in fact be f
understood if one requires the average curvature to be e
to 1, as is implied by the universal distribution, Eq.~1!.

So far, all studies of parametric correlations have be
concentrated on the fully chaotic regime when the syst
statistics are well described by the Gaussian ensemble
random matrix theory, in particular, the GOE, if there
time-reversal invariance. The partially chaotic situation h
been little investigated. We intend here to provide a syste
atic discussion of this situation. In Sec. II, we develop t
formalism and the model we employ, and in Sec. III, w
present the numerical results and the discussion. We ve
that, at the GOE limit, the above universal expression for
level curvature distribution is obtained. As some degree
symmetry is introduced, it is found that the distribution b
comes narrower. However, as the symmetry is progressi
©2002 The American Physical Society03-1
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introduced, the distribution returns to the universal functi
if the average of curvatures is imposed as 1.

II. THE FORMALISM AND THE MODEL

We shall now derive a set of equations that describe
multaneously the dynamics of the energy levels and of
eigenvector components of a HamiltonianH. These equa-
tions contain the equations of motion of the matrix eleme
of H, whose dependence on the parametert, representing the
‘‘time,’’ is supposed to be given. Our starting point is th
general matrix equation

H5UHDU†, ~2!

whereH is anN3N real symmetric matrix,HD is the diag-
onal matrix constructed with theN eigenvalues, andU is the
unitary matrix whose columns are theN eigenvectors. As-
suming thatHD andU also depend on the parametert, dif-
ferentiating Eq.~1! with respect tot we get

Ḣ5U ḢDU†1U̇ HDU†1UHDU̇†, ~3!

where the derivative is indicated by a dot. Multiplying E
~3! by U† from the left, byU from the right, and defining the
matrix S5U†U̇52U̇†U we obtain the equation of motion

ḢD5@HD ,S#1P, ~4!

where the matrixP5U†ḢU was introduced. On the othe
hand, we find forP the conjugate evolution equation

Ṗ5@P,S#1U†ḦU. ~5!

By choosing a particular model, i.e., the dependence
the matrix element on the parametert, these equations can b
employed in several contexts. They can be used, for
ample, to construct an alternative method of matrix diagon
ization, or, by requiring the matrix elements to satisfy app
priate Langevin equations, they lead to Dyson’s Brown
motion model @10#. Here, we concentrate on the simp
model given by

H5H1cost1H2sint, ~6!

whereH1 andH2 are a couple of fixed, i.e., parameter ind
pendent, random matrices taken from the same matrix
semble, andt is the parameter. If in Eq.~6! H1 andH2 are
taken from a Gaussian ensemble, the evolution will prese
the probability distribution, so thatH will remain in the same
ensemble. With this choice, Eq.~5! becomes

Ṗ5@P,S#2HD . ~7!

The pair of coupled equations, Eqs.~4! and ~7!, have the
explicit solution

HD~ t !5U†~ t !@HD~0!cost1P~0!sint#U~ t !

and
05720
,

i-
e

s

f

x-
l-
-
n

n-

e

P~ t !5U†~ t !@2HD~0!sint1P~0!cost#U~ t !,

whereU(t) is the solution of the equationU̇5US given by

U~ t !5T expE
0

t

S~t!dt

with T being the time-ordering operator.
To implement this solution numerically a basis has to

chosen to express the eigencomponents. Since our obje
is to investigate the curvature, a quantity related to the
havior of the eigenvalues as the external parameter is va
it is convenient to use the instantaneous Hamiltonian eig
states as basis vectors. In this case, from the diagonal pa
Eq. ~4!, we derive

Ėk5Pkk ~8!

and using in Eq.~5! the relationSkl5Pkl /(Ek2El) @ob-
tained from the off-diagonal part of Eq.~4!# we can then
derive the equations

Ṗkl52
Pkk2Pkl

Ek2El
Pkl1 (

m51,mÞk,l

N

PkmPlmS 1

Ek2Em

1
1

El2Em
D ~9!

and

Ṗkk52Ek1 (
m51,mÞk

N 2Pkm
2

Ek2Em
. ~10!

This set of coupled equations is one of the main results
this paper. All calculations will be based on it. Thus t
‘‘accelerations,’’ i.e., the levels’ curvature, are just given
Eq. ~10!.

Regarding the random matrix ensemble, we shall w
with a Gaussian ensemble that interpolates between
GOE and two decoupled GOE’s. This ensemble has b
already employed with a very satisfactory result in the ana
sis of data relative to symmetry breaking@11,12# in nuclear
@13# and acoustic systems@9#. It can be defined by the fol-
lowing operator equation@14#:

H5PHGOEP1QHGOEQ1l~PHGOEQ1QHGOEP!,
~11!

where P5( i 51
M Pi , Q512P, and Pi5u i &^ i u, i 51, . . . ,N

are projection operators, 0<l<1 is the parameter that con
trols the transition, andHGOE denotes a GOE matrix whos
elements follow a joint probability distribution given by

P~HGOE!}exp@2a tr~HGOE!2#, ~12!

with a being an arbitrary scaling parameter. With the abo
definitions,l51 corresponds to the GOE case, whilel50
corresponds to block diagonal random matrices, made u
two GOE matrices of sizesM3M and (N2M )(N2M ).
3-2
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Regarding this ensemble, it is important to stress thatl is
not a more convenient parameter to work with, since
transition is also dependent on the matrix sizeN. Indepen-
dence on the dimension is obtained by introducing the sc
parameter

«5ANl. ~13!

III. NUMERICAL RESULTS AND DISCUSSION

Before presenting the results, we discuss the resca
variables necessary to extract a universal behavior. First
have to unfold the spectrum, that is, we work with a n
spectrum generated by the transformation

xl5E
2`

El
dEr̄~E! for l 51, . . . ,N, ~14!

where r̄(E) is the averaged level density. Without loss
generality, we consider in the calculation only the symme
situation, N52M , in which the matrices are decompos
into blocks of equal size. In this case, the average densi
given by the Wigner’s semicircle law@15#. With an appro-
priate scaling that guarantees the correct value of the se
moment of the eigenvalue, the level density is given by

r̄~E!5
4a

p~11l2!
A N

2a
~11l2!2E2. ~15!

FIG. 1. Densitiy of levels: comparison of the calculated dens
~histogram! with the semicircle law~15! ~solid line!. The calcula-
tion corresponds to matrices of dimensionN5100, and«50.32.
Both density (r) and energy~E! are in arbitrary units.
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In Fig. 1, we show the nice fit obtained with this expressi
when compared with the numerical values ofr̄(E) generated
within the two coupled GOE’s ensemble alluded to above

Second, we need some normalization of the accelerati
This is a controversial issue that requires some discuss
On one hand, it has been proposed that the paramet
should be replaced by a new dimensionless parametert re-
lated tot by @16#

dt

dt
5A^ẋ2&, ~16!

where the average of the velocity is made over the whole
of eigenvalues or, equivalently, over the ensemble. The le
curvature is then defined in terms of these new scaled v
ables as

K5
1

p

d2x

dt2
5

1

p^ ẋ2&
S ẍ2

^ẋẍ&

^ ẋ2&
ẋD , ~17!

whereẋ5 r̄(E)Ė and ẍ5 r̄(E)Ë1dr̄(E)/dE(Ė)2.
On the other hand, the universal curvature distributi

Eq. ~1!, implies that^uku&51. It is not at all clear that the
scaled curvatures given by Eq.~17! will satisfy this condi-
tion. Thus, we imposed the normalization

y
FIG. 2. Level curvature distributions: comparison of the calc

lated histograms with the theoretical prediction~1! ~solid line!. The
calculations correspond to matrices of dimensionN5100, and for
the values of« indicated in the figure. The variablesP(k) andk are
dimensionless.
3-3
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k5
K

^uKu&
~18!

with K given by Eq.~17!. Our calculations have shown tha
this last step is necessary in order to get stable results,
independent of the subset of levels of the spectra over w
the statistics is performed.

The behavior of the distribution, Eq.~1!, for large curva-
tures can be traced to the level spacing distribution. In f
large curvatures can be considered, approximately, as
versely proportional to the small level spacings. Thus if we
assumes}1/k and use the fact that, in the GOE case,P(s) is
linear in s, we obtain

P~k!;P~s!Uds

dkU;k23, ~19!

as predicted by Eq.~1!. As a consequence, as symmetry
introduced by decreasing the parameterl, one would expect

FIG. 3. Fitting of the data~crosses! of Ref. @8# with the param-
etrized distribution~20! ~solid line!. The best fit (x250.000 04)
was obtained withg51.2760.01. The dotted curve corresponds
the universal distribution. The variables are dimensionless.
,
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K
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a reduction on the probability of large curvatures with t
distribution becoming narrower. We shall see that this inde
happens.

Our main results are presented in Fig. 2, where the c
vature distributions were calculated for four values of t
scaled parameter~13!. The figures show that, at the two ex
treme situations, namely, in the one GOE limit and in the t
fully decoupled GOE’s limit, the curvatures distribute them
selves according to the universal distribution. We would e
pect this kind of behavior in the latter limit, since the leve
in each block become completely independent of the lev
in the other. Thus, their trajectories can cross freely. As
above discussion predicted, the distributions are narrowe
the intermediate region. We stress that these results
strongly dependent on the renormalization~18!.

Turning now to the question of the behavior~distributions
wider than the universal! presented by the data of Ref.@8#,
one possible explanation would be that the curvatures do
average to 1. To check this point we have fitted the data w
the distribution

P~K !5
1

2g@11~K/g!2#3/2
~20!

in which the average curvatureg5^uKu& is treated as a free
parameter. The best fit, obtained withg51.2760.01, is dis-
played in Fig. 3. This excellent fit makes this explanati
plausible.

In conclusion, we have investigated the effect of the sy
metry breaking on the level curvature distribution using
random matrix ensemble that allows for a transition from o
GOE to two decoupled GOE’s. We have also provided
explanation for the discrepancy@8# of the data regarding the
temperature dependence of frequencies of acoustic vibrat
of quartz blocks.
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